script para aplicacoes de efeitos visuais e funcionalidades de consulta Banco Internacional de Objetos Educacionais

Classificação

Estatísticas

Estatísticas

Visualizar Arquivos Tamanho Formato Download
Visualizar/ Abrir TheNaturalLogar ... OfTheIntegralsOfPowers.nbp 68.78Kb application/octet-stream
Título: The natural logarithm is the limit of the integrals of powers
Tipo do recurso: Animação/simulação
Descrição do recurso: Assume that a=/0 and that x>0 The integral of x^(a-1) is (x^a)/a + C, where C is an arbitrary constant. The integral of x^-1=1/x is log(x)+C´, where again C' is an arbitrary constant and log(x) is the natural logarithm of x, often written as ln(x) When a is close to zero, x^(a-1) and x^-1are close, so there must be some connection between their integrals! Choose C=-1/a and C´=0 so that the two integrals are both zero at x=1. The integrals are then ((x^a)/a)-(1/a) and log(x). For a close to zero these functions are very close; in symbols, lim ((x^a)/a-(1/a)=log(x) when a tends to 0 Using the difference quotient for the derivative of the base-x exponential function f(b)=x^b with respect to b (not x) and using a instead of the more usual h gives f'(b) = lim(f(a+b)-f(b))/a = lim(x^(b+a)- x^b)/a = x^b lim(x^b-1)/b) = x^b log(x). This is more usually written with x as the variable: (d/dx)u^x=u^zlog(u), with the special case (d/dx)e^x=e^x
Observação: This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737
Componente Curricular: Educação Superior::Ciências Exatas e da Terra::Matemática
Tema: Educação Superior::Ciências Exatas e da Terra::Matemática::Análise Funcional
Autor(es): Beck, George
Idioma: Inglês (en)
País: Estados Unidos da América (us)
Fonte do recurso: Wolfram Demonstration Project
Descrição: Natural Logarithm, Limit, Integral
Endereço eletrônico: http://demonstrations.wolfram.com/TheNaturalLogarithmIsTheLimitOfTheIntegralsOfPowers/
Data de publicação: 2008
Detentor do direito autoral: The Wolfram Demonstrations Project & Contributors
Licença: Demonstration freeware using Mathematica Player
Submetido por: Universidade Federal de São Carlos (UFSCAR)
URI: http://objetoseducacionais2.mec.gov.br/handle/mec/5600
Disponível em: Educação Superior: Ciências Exatas e da Terra: Matemática: Animações/Simulações